Monatshefte für Chemie 110, 223–234 (1979)

Monatshefte für Chemie

© by Springer-Verlag 1979

Leitfähigkeitsmessungen an Tetraethylammoniumhexacyanoferrat(III) und Tetrabutylammoniumhexacyanoferrat(III) in verschiedenen Lösungsmitteln

Iren Korondán^a, Wolfgang Linert^b, Gerhard Gritzner^{b,*} und Viktor Gutmann^b

^a Institut für Anorganische und Analytische Chemie, Kossuth Universität, H-4010 Debrecen, Ungarn

^b Institut f
ür Anorganische Chemie, Technische Universit
ät Wien, A-1060 Wien, Österreich

(Eingegangen 30. Mai 1978. Angenommen 12. Juni 1978)

Conductivity Measurements on Tetraethylammonium Hexacyanoferrates(III) and Tetrabutylammonium Hexacyanoferrates(III) in Different Solvents

Based on conductivity measurements, the dissociation of tetraalkylammoniumhexacyanoferrates(III) in water, ethanol, formamide, N-methylformamide, N,N-dimethylformamide, propylenecarbonate and acetonitrile is discussed. Interactions of the solvent as donor and as acceptor, the latter interaction being dominant, with $(et_4N)_3$ Fe(CN)₆ and $(bu_4N)_3$ Fe(CN) were found to be important factors in the formation of solvated ions.

[Keywords: Conductivity measurements; Nonaqueous solvents; Tetraethylammonium hexacyanoferrate(III); Tetrabutylammonium hexacyanoferrate(III)]

Einleitung

Untersuchungen des Lösungsmitteleinflusses auf die Redoxpotentiale der Systeme Tetraethylammoniumhexacyanoferrat(III)/Tetraethylammoniumhexacyanoferrat(II) $[(et_4N)_3Fe(CN)_6/(et_4N)_4Fe(CN)_6]$ sowie Tetrabutylammoniumhexacyanoferrat(III)/Tetrabutylammoniumhexacyanoferrat(II) $[(bu_4N)_3Fe(CN)_6/(bu_4N)_4Fe(CN)_6]$ haben ergeben^{1, 2}, daß die Redoxpotentiale bezogen auf Bisbiphenylchrom als lösungsmittelunabhängiges Bezugsredoxsystem^{3,4}, nicht nur von den koordinationschemischen Eigenschaften der Lösungsmittel abhängen, sondern auch von denen der Zusatzelektrolyte Tetraethylammoniumperchlorat (et_4 NClO₄) und Tetrabutylammoniumperchlorat (bu_4 NClO₄).

Mit Hilfe von Leitfähigkeitsmessungen an $(et_4N)_3$ Fe $(CN)_6$ und $(bu_4N)_3$ Fe $(CN)_6$ in verschiedenen Lösungsmitteln sollte untersucht werden, durch welche Lösungsmittelparameter das Ausmaß der Dissoziation bestimmt wird. Als Lösungsmittel dienten: Wasser, Formamid, N-Methylformamid, N,N-Dimethylformamid, Propylencarbonat, Acetonitril und Ethanol.

Experimenteller Teil

Die Reinigung der Lösungsmittel sowie die Darstellung von (et₄N)₃Fe(CN)₆ und $(bu_4N)_3$ Fe(CN)₆ erfolgten wie beschrieben^{1,2}. Der Wassergehalt der Lösungsmittel wurde nach Karl Fischer ermittelt und lag in allen Fällen unter der Erfassungsgrenze von 10⁻⁴ moldm⁻³. Die Probenvorbereitung und die Probenzugabe erfolgte unter Reinststickstoff. Die Meßzelle zur Bestimmung der Leitfähigkeitswerte wurde in einer Trockenbox unter Reinststickstoff mit 30 ml Lösungsmittel gefüllt und verschlossen aus der Box herausgebracht. Die Lösungen der Salze in den entsprechenden Lösungsmitteln wurden ebenfalls unter Stickstoff hergestellt und in 1 cm³ und 10 cm³ gasdichten kalibrierten Hamilton Injektionsspritzen abgefüllt. Die Spitze der Nadel war durch ein Silikonseptum verschlossen. Die Einbringung des Elektrolyten in die Meßzelle erfolgte durch Durchstechen sowohl des Septums an der Spitze als auch eines an der Meßzelle gasdicht angebrachten Septums². Die jeweils zugegebene Menge wurde durch Differenzwägung der Hamiltonspritze ermittelt. Die Elektroden bestanden aus glatten Platinplättchen, eine Seite jeder Elektrode war an Glas angeschmolzen. Die Bestimmung der Zellkonstante erfolgte mittels wäßriger KCl-Lösung. Die Leitfähigkeitsmessungen wurden an einer Wayne Kerr Autobalance Universal Bridge 642 bei $25^{\circ} \pm 0.02$ °C durchgeführt.

Ergebnisse und Diskussion

Die molaren Leitfähigkeiten $\lambda'_{c}[\Omega^{-1} \operatorname{cm}^{2} \operatorname{mol}^{-1}]$ und die molaren Konzentrationen von $(et_{4}N)_{3}\operatorname{Fe}(\operatorname{CN})_{6}$ sind in Tab. 1, die entsprechenden Werte von $(bu_{4}N)_{3}\operatorname{Fe}(\operatorname{CN})_{6}$ in Tab. 2 zusammengefaßt. Leitfähigkeitsmessungen des $(et_{4}N)_{3}\operatorname{Fe}(\operatorname{CN})_{6}$ wurden in Wasser, Acetonitril, N, N-Dimethylformamid, N-Methylformamid, Propylenecarbonat und Formamid durchgeführt. Die molaren Leitfähigkeiten des $(bu_{4}N)_{3}\operatorname{Fe}(\operatorname{CN})_{6}$ wurden außer in den angeführten Lösungsmitteln auch in Ethanol bestimmt. Sowohl für $(et_{4}N)_{3}\operatorname{Fe}(\operatorname{CN})_{6}$ wie auch für $(bu_{4}N)_{3}\operatorname{Fe}(\operatorname{CN})_{6}$ ist in den untersuchten Lösungsmitteln prinzipiell eine stufenweise Ionisierung nach dem Schema

$$\begin{split} (R_4\mathbf{N})_3\mathrm{Fe}(\mathbf{CN})_6 \rightleftharpoons (R_4\mathbf{N})^+ + [(R_4\mathbf{N})_2\mathrm{Fe}(\mathbf{CN})_6]^- \rightleftharpoons 2 \ (R_2\mathbf{N})^+ + \\ &+ [(R_4\mathbf{N})\mathrm{Fe}(\mathbf{CN})_6]^2 \rightleftharpoons 3 \ (R_4\mathbf{N})^+ + \mathrm{Fe}(\mathbf{CN})_6^{3-} \end{split}$$

Wa	sser	Acet	onitril
c · 104 [mol đm=3]	λ'_c	$c \cdot 10^4$	λ <u>΄</u>
		[molam=3]	$[\Omega + cm^2 mol^{-1}]$
0.9998	200.24	0.0705	
0,2320	399,24	0,2705	598,80
0,3849	383,94	0,6742	553,65
1,790	376,80	1,042	526,65
2,243	369,81	1,496	501,75
2,995	363,09	1,949	474, 12
4,125	360,0	2,595	457,32
4,866	354,9	3,262	441,30
5,137	352,5	4,503	412,05
5,769	349,8	4,933	411,00
6,650	346,8	5,789	398,85
7,009	344,1	6,843	386, 61
7,913	339,9	$7,\!486$	375,51
8,690	336,1	7,846	375,00
9,018	334,5	9,616	358,05
11,57	325,08	11,29	348.12
16,21	311,19	13,11	336.66
23,14	298,5	17,72	312.21
30,26	286,38	21,28	296.37
		25.31	282.99
		29.27	271 14
		33,42	261,81
Propyle	encarbonat	N-Meth	vlformamid
FJ	<u></u>		<i>J</i> = 01 III.0
0,3504	85,5	0,3576	149,36
0,6595	84,9	0,6408	$149,\!49$
1,234	84,0	1,020	149,01
1,450	83,7	1,272	149,01
1,825	83,19	1,855	148,98
2,005	83,04	2,568	148,65
2,624	82,59	2,826	$148,\!53$
3,063	82,05	3,240	148, 11
4,000	$81,\!42$	$3,\!445$	147,96
4,792	81,00	4,125	147,54
5,387	80,70	$4,\!406$	147,81
5,861	80,40	4,792	148,02
6,280	80,22	5,769	147,57
6,817	79,98	6,776	146,79
7,458	$79,\!62$	7,773	147,09
7,890	79,41	9,018	146,10
9,006	78,99	11,50	146,40
10,25	78,63	14,54	146,34
12,98	77,37	16,00	146, 43
19,26	75,54	19,27	144,00

Propyle	ncarbonat	$N ext{-Methy}$	ylformamid
$c \cdot 10^4$	λ	$c \cdot 10^4$	λ'.
$[mol dm^{-3}]$	$[\Omega^{-1}\mathrm{cm}^{2}\mathrm{mol}^{-1}]$	$[mol dm^{-3}]$	$\Omega^{-1} \operatorname{cm}^2 \operatorname{mol}^{-1}$]
23,04	74,79	23,13	144,99
26,92	74,10	29,03	144,15
$31,\!37$	72,99	$31,\!51$	144,09
38,69	72,00	38,46	143,16
For	mamid	N,N-Dime	ethylformamid
1.107	70.11	0.3700	214.0
2.187	69.99	0.6426	201.8
2,836	69,71	0.7413	195.2
4,203	68 , 49	1.042	188,1
5,368	68,22	1,418	177,1
7,054	67,98	1,940	163,8
8,839	67,92	2,310	160,0
10,57	67,11	2,560	156, 1
$11,\!42$	$66,\!60$	2,826	151,0
13,94	66,00	3,233	148,2
16,66	65,76	3,445	145,0
19,70	64,98	4,406	138,3
21,30	64,20	4,792	135,8
23,06	64,02	5,774	130,1
25,04	63,81	6,315	128,0
27,47	63, 69	6,970	123,1
$30,\!45$	63,03	7,840	120,0
33,91	62,31	8,860	116,3
		9,992	105,8
		12,46	103,1
		14,39	98,3
		16,97	86,5
		$23,\!45$	76,1
		26,89	68,1
		31,56	57,9
		36,00	50,0
		38,56	44,0

Tabelle 1 (Fortsetzung)

möglich. Darüber hinaus sind Ionenpaare, Tripel- und Mehrfachionenpaare möglich. Auf Grund der an den Cyanogruppen lokalisierten negativen Ladungen wäre selbst eine Spezies der Form $[(et_4N)_6Fe(CN)_6]^{3+}$ denkbar.

Eine vollständige Leitfähigkeitsgleichung, die eine derartige stufenweise Ionisierung eines potentiellen 3:1-Elektrolyten und die Möglichkeiten der Ionenpaarbildung in Lösung exakt beschreibt, ist derzeit

Wa	sser	Acet	onitril
$c\cdot 10^4$	λ'	$c \cdot 10^4$	λ'
[mol dm-3]	$[\Omega^{-1} \operatorname{cm}^2 \operatorname{mol}^{-1}]$	[mol dm-3]	$\left[\Omega^{-1} \operatorname{cm}^2 \operatorname{mol}^{-1}\right]$
			······································
1,229	338,7	0.2061	622.2
2,139	334.5	0.3078	608.7
2,859	332.1	1.580	531.9
3,094	110.0	2.378	503.7
4,331	328.8	2.950	486.9
6,426	324,9	3.750	474.6
6,697	323,1	3.913	471.0
8,620	339,6	4.278	456.3
10,02	336.0	5.084	441.9
10,96	314,7	5.903	429.3
15,86	311,6	6.224	429.0
20.69	304.2	6.574	419.7
25,41	300,6	9.462	399.0
28,39	298.5	11.25	375.9
	,	13.25	355.5
		17.24	334.8
		20,15	340,8
Duonalo		37 37.41.16	• • 1
r ropytei	acarbonat	N-Metnyli	ormamid
0,4926	78,81	1,464	125,1
0,6597	$78,\!63$	2,563	124,2
1,073	78,39	2,924	123,9
1,418	78,03	3,320	123,0
1,578	77,21	4,040	121,2
1,968	77,76	4,757	121,2
2,634	77,37	5,336	120,9
3,208	77,07	5,789	120,6
3,932	76,77	6,770	121,2
4,844	76,50	7,913	120,1
5,570	75,99	8,491	120,2
5,818	76,08	9,096	120,2
6,807	75,93	11,02	119,7
7,851	76,74	13,77	117,6
11,23	74,70	15,32	118,2
14,60	74,16	17,55	117,3
19,62	73,38	19,44	116,7
22,33	72,78	23,00	115,8
28,19	72,60	27,23	114,9
		31,60	113,7
N,N-Dimeth	ylformamid	For	mamid
0,7910	240,3	1,266	66.6
1,730	222,0	2,716	66,0

N,N-Dim	ethylformamid	Form	namid
$c\cdot 10^4$	λ_c'	$c\cdot 10^4$	λ_c'
$[mol dm^{-3}]$	$[\Omega^{-1} \operatorname{cm}^2 \operatorname{mol}^{-1}]$	[mol dm ⁻³]	$[\Omega^{-1}\mathrm{cm}^2\mathrm{mol}^{-1}]$
$3,\!437$	196,5	4,052	65,7
4,323	191,1	5,415	65,4
4,348	189,9	7,076	63,9
4,913	186,3	9,309	64,0
5,594	181,5	11,45	63,9
6,293	172,2	15,03	63,3
7,345	171,4	17,91	62,4
9,229	162,0	19,81	61,2
13,46	147,9	22,59	60,9
17,02	139,5	$25,\!45$	60,9
19,77	139,2	28,28	59,7
23,19	126,4		
26,62	123,6		
30,16	119,4		
$33,\!45$	115,8		
\mathbf{Eth}	anol		
1,144	48,60		
2,134	45;18		
3,197	42,06		
4,078	39,90		
5,382	37,59		
6,365	36,30		
7,435	34,92		
8,352	33,92		
10,88	30,09		
13,10	28,20		
15,35	25,59		
18,19	23,19		
21,04	21,39		

Tabelle 2 (Fortsetzung)

noch nicht bekannt. Mangels eines Modelles, das die für Elektrolyte dieser Art auftretenden Phänomene weitgehend wiedergeben kann, werden daher die Ergebnisse mittels der extrapolierten Grenzleitfähigkeiten der untersuchten Elektrolyte und der Grenzleitfähigkeiten der Einzelionen, sowie der experimentellen und nach *Onsager* berechneten Steigungen untersucht und diskutiert⁵.

In einer Anzahl von nichtwäßrigen Lösungsmittel sind die Äquivalentleitfähigkeiten (λ_0) des Tetraethylammoniumkations $(et_4N)^+$ und des Tetrabutylammoniumkations $(bu_4N)^+$ bereits experimentell bestimmt worden (Tab.3). Die Grenzleitfähigkeiten von $(et_4N)^+$ und

der	
Äquivalenzleitfähigkeiten	
berechnete	
Walden- $Produkt$	² ä.q^-1]
dem	-1 cm ⁵
aus	$n [\Omega]$
bzw.	elion
experimentelle	Einz
pun	
$L\"osungsmittelparameter$	
le 3.	
Tabell	

Lösungsmittel	ω	$_{cP}^{\eta}$	Donor- zahl	Akzeptor- zahl	${ m \ddot{A}} { m quivalentg} (et_4 { m N})^+$	${ m grenzleit}$ fähigkeiten $(bu_4{ m N})^+$	${}^{\mathrm{L}}_{\mathrm{3}}\mathrm{Fe}(\mathrm{CN})_{\mathrm{6}}{}^{\mathrm{3-}}$
Wasser	78,3	0,8903	~ 33	54,8	32,79	$19, 2^{9}$	1008
N-Methylformamid	182,4	1,65	1	32,1	$26,20^{7}$ 19,9 ^a	12,99a	53,96ª
Formamid	109.5	3,302		39.8	$11,03^{10}$	6.8310	26.96^{a}
N, N-Dimethylformamid	36,71	0,796	26,6	16	$42,41^{a}$	$26,95^{a}$	111,8ª
Acetronitril	35,95	0,3409	14,1	19.3	$85,03^{6}$	61.8^{6}	288.1^{a}
Propylencarbonat	64,4	2,530	15,1	18,3	$13,28^{11}$	9,3911	$53,18^{a}$
Ethanol	24,55	1,089	1	37,1	29,2712	19,6712	81,85ª

Leitfähigkeitsmessungen

 $(bu_4N)^+$ wurden für jene Lösungsmittel, für die experimentelle Daten nicht vorlagen, aus der *Walden*-Regel ermittelt. Verwendet wurde jeweils ein Mittelwert aus den *Walden*-Produkten aller Lösungsmittel, in denen experimentelle λ_0 -Werte vorlagen⁶. Für *N*-Methylformamid wurde für $(et_4N)^+$ ein Wert von $26,20 \,\Omega^{-1} \,\mathrm{cm}^2 \,\mathrm{\ddot{a}q}^{-1}$ in der Literatur angegeben⁷. Der auf Grund der *Walden*-Regel ermittelte Wert betrug $19,91 \,\Omega^{-1} \,\mathrm{cm}^2 \,\mathrm{\ddot{a}q}^{-1}$. Zur Berechnung der Grenzleitfähigkeit und der Steigung nach *Onsager* wurde der Wert von 19,91 herangezogen. Die Äquivalenzgrenzleitfähigkeit des $\mathrm{Fe}(\mathrm{CN})_6^{3-}$ -Ions ist nur in Wasser bekannt⁸. Die Grenzleitfähigkeiten des $\mathrm{Fe}(\mathrm{CN})_6^{3-}$ in den anderen untersuchten Lösungsmitteln wurden aus dem *Walden*-Produkt ermittelt.

		Molare Grenzl	eitfähigkeiten	
Lösungsmittel	$(et_4\mathbf{N})_3\mathbf{I}$	$Fe(CN)_{6}$	$(bu_4N)_3$	Fe(CN) ₆
	Berechnet	Extrapoliert	Berechnet	Extrapoliert
Wasser	398.1	403.8	357.6	345
N-Methylformamid	221.6	151.2	200.9	126
Formamid	114,0	72,0	101,4	69
N,N-Dimethylformamid	462,7	284,0	416,3	302
Acetonitril	1119,4	690,0	1049,7	680
Propylencarbonat	199,4	86,4	187,8	79,5
Ethanol	´	-	304,3	55,5

Als erstes Kriterium für den Grad der Dissoziation werden die extrapolierten molaren Grenzleitfähigkeiten von $(et_4N)_3$ Fe $(CN)_6$ und $(bu_4N)_3$ Fe $(CN)_6$ mit den aus den molaren Grenzleitfähigkeiten der Einzelionen ermittelten Werte verglichen. Die molaren Grenzleitfähigkeiten wurden in dieser Arbeit den sonst üblichen Äquivalentgrenzleitfähigkeiten vorgezogen, da sich die untersuchten Verbindungen in den meisten Lösungsmitteln nicht wie 3:1-Elektrolyte verhielten. Unter diesen Umständen werden Berechnungen von Äquivalentleitfähigkeiten problematisch.

Die in Tab. 4 angeführten extrapolierten molaren Grenzleitfähigkeiten zeigen mit den aus Grenzleitfähigkeiten der Einzelionen berechneten Werte nur für Wasser gute Übereinstimmung. In Wasser liegen also sowohl $(et_4N)_3$ Fe $(CN)_6$ als auch $(bu_4N)_3$ Fe $(CN)_6$ als 3:1-Elektrolyte vor.

230

Die Abweichung der experimentell gefundenen Steigung der Leitfähigkeitsgeraden von der nach Onsager berechneten Steigung kann der Bildung von Ionenpaaren wie auch der vereinfachten mathematischen Beziehung, die dieser Berechnung zugrunde liegen, zugeordnet werden.

In allen anderen Lösungsmitteln sind die durch Extrapolation erhaltenen molaren Grenzleitfähigkeiten bedeutend geringer als die aus den Grenzleitfähigkeiten von $(et_4N)^+$ bzw. $(bu_4N)^+$ und Fe $(CN)_6^{3-}$ berechneten molaren Grenzleitfähigkeiten. In diesen Lösungsmitteln reicht somit eine Beschreibung der Ergebnisse der Leitfähigkeitsmessungen als 3:1-Elektrolyt mit teilweiser Ionenpaarbildung nicht aus: es muß eine stufenweise Ionisierung der untersuchten Verbindungen angenommen werden. Würde nämlich nur Ionenpaarbildung im Sinne *Bjerrum*'s für das Abweichen der gefundenen Leitfähigkeitswerte maßgebend sein, so müßte auch in *N*-Methylformamid und Formamid, die beide eine größere Dielektrizitätskonstante als Wasser besitzen, ebenso wie in Wasser gute Übereinstimmung der experimentellen und der für einen 3:1-Elektrolyten berechneten molaren Grenzleitfähigkeiten bestehen.

Mit Ausnahme von N,N-Dimethylformamid und Acetonitril wurde in allen untersuchten Lösungsmitteln über einen Konzentrationsbereich von 10^{-4} — 10^{-3} mol dm⁻³ eine lineare Abhängigkeit der molaren Leitfähigkeit von der Wurzel der Konzentration angetroffen.

Um festzustellen, ob die Leitfähigkeitsdaten auf die Bildung von 1:1- oder 2:1-Elektrolyten zurückgeführt werden können, wurden aus den molaren Grenzleitfähigkeiten hypothetische Werte für die Äquivalentleitfähigkeiten möglicher Anionen wie $(et_4N)_2$ Fe $(CN)_6^-$, $(bu_4N)_2$ Fe $(CN)_6^-$, (et_4N) Fe $(CN)_6^{2-}$ und (bu_4N) Fe $(CN)_6^{2-}$ berechnet. Da ihre Ionenradien sicher größer sind als der des Fe $(CN)_6^{3-}$ -Ions, sind berechnete Äquivalentleitfähigkeiten nur dann sinnvoll, wenn sie vergleichbar oder kleiner sind als die Äquivalentleitfähigkeit des Fe $(CN)_6^{3-}$ -Ions im entsprechenden Lösungsmittel. Derartige Überlegungen schließen, wie die in Tab. 5 angeführten Werte zeigen, für *N*-Methylformamid, Formamid, Propylencarbonat und Acetonitril das Vorliegen eines 1:1-Elektrolyten aus.

Betrachtet man neben den Grenzleitfähigkeiten auch die nach Onsager berechneten Steigungen der Abhängigkeit der molaren Leitfähigkeit von der Wurzel der molaren Konzentration (Tab. 6) so zeigt sich, daß die Ergebnisse in N-Methylformamid und Formamid am besten durch vollständige Dissoziation zweier und teilweiser Dissoziation eines weiteren Kations beschrieben werden. Die Grenzleitfähigkeiten in N,N-Dimethylformamid und Acetonitril deuten auf das Vorliegen eines 2:1-Elektrolyten, doch nehmen die Leitfähigkeitswerte mit zunehmender Konzentration rasch ab. In diesen beiden Lösungsmitteln ist die Dissoziation geringer als es einem 2:1-Elektrolyten entsprechen würde. In Ethanol wird nicht einmal eine vollständige Dissoziation als 1:1-Elektrolyt erreicht.

Eine Deutung dieser Ergebnisse kann nicht alleine auf Grund der Dielektrizitätskonstante der Lösungsmittel erfolgen. Dies würde nämlich im Widerspruch zu den Ergebnissen eine Abnahme der Assoziation durch Ionenpaarbildung im *Bjerrum*schen Sinne in der

Tab	elle 5.	Vergl	eich d	'er aus	den	molaren	Grenzleitfä	higkeiten	unter	der ∡	Annahme
des	Vor lie	egens	von	1:1-	bzw.	2:1-E	lektrolyten	berechne	ten i	hypot	hetischen
		Gr	enzlei	tfähigk	eitsu	verte der	entspreche	nden Ani	onen		

	$(et_4N)_2Fe(CN)_6^-$	$(et_4N)Fe(CN)_6^{2-}$	$(bu_4N)_2$ Fe(CN) ₆ -	$(bu_4\mathrm{N})\mathrm{Fe}(\mathrm{CN})_6^{2-}$
Wasser	371.1	169.2	325.8	158.3
N-Methylformamid	131,3	55.7	113.0	50.0
Formamid	61.0	25.00	62.2	27.7
N,N-Dimethylformamid	,		275,05	125,05
Acetonitril	604,97	269,97	618,2	278.2
Propylencarbonat	73,1	29,9	70.1	30.4
Ethanol			35,83	8,1

Folge Ethanol, Acetonitril, N,N-Dimethylformamid, Propylenecarbonat, Wasser, Formamid und N-Methylformamid bedeuten. Für die Interpretation der Ergebnisse ist es daher notwendig, die Bildung von Ionen aus den untersuchten Verbindungen durch Donor-Akzeptor¹³ Wechselwirkungen zwischen Lösungsmittel und gelöstem Stoff zu betrachten, wobei sich für die Kationensolvatation die Donorzahl¹⁴ und für die Anionensolvatation¹⁵ die Akzeptorzahl zur Quantisierung dieser Eigenschaften bewährt haben.

Hexacyanoferrationen werden von Acceptorgruppen der Lösungsmittelmoleküle an den N-Atomen der Cyanogruppen angegriffen. Sie sind stärker solvatisierbar, als die Tetraalkylammoniumionen, welche schwache Acceptoren sind. Daher können diese Kationen mit dem Acceptorlösungsmittel um die Positionen an den Cyanogruppen konkurrieren. Je höher die Akzeptorzahl des Lösungsmittels, desto schwächer wird dieser Einfluß der Kationen und damit die Ionassoziation sein und desto stärker die Ionisation des Komplexes.

Dementsprechend liegen die Verbindungen in Wasser (sehr hohe Akzeptorzahl) fast vollständig ionisiert und zufolge der hohen Dielektrizitätskonstante auch entsprechend dissoziiert vor. Trotz der

232

LösungsmittelExper.Ber. $3:1$ $2:1$ $1:1$ Exper.Ber. $3:1$ $2:1$ $1:1$ Waser -2232 -1509 -642 -146 -948 -1558 -645 -1 Waser -2232 -1509 -642 -146 -948 -1558 -645 -1 Waser -2232 -1509 -642 -146 -948 -1558 -645 -1 N.Methylformanid -125 -418 -166 -36 -242 -416 -1131 -242 No.N.Dimethylformanid -159 -3963 -1844 -448 -302 -3918 -1755 -4 Acconitril -690 -10009 -4602 -1104 -680 -9965 -4465 -100 Propylencarbonat -242 -823 -364 -85 -139 -222 -355 -100			$(et_{A}N)_{B}F$	e(CN),			$(hu_n N)_{\alpha}$	Fe(CN) _s	
Wasser -2232 -1509 -642 -146 -948 -1558 -645 -1 N-Methylformamid -125 -418 -166 -36 -242 -416 -163 -5 Formamid -125 -418 -166 -36 -242 -416 -163 -5 Formamid -125 -3123 -136 -31 -161 -321 -131 N.N.Dimethylformamid -159 -323 -136 -31 -161 -321 -1755 Acetonitril -690 -10009 -4602 -1104 -680 -9965 -4465 -10 Propylencarbonat -242 -823 -364 -85 -139 -165 -10	Lösungsmittel	Exper.	Ber. 3:1	2:1	1:1	Exper.	Ber. 3:1	2:1	1:1
wassed -2.22 -1.09 -0.42 -1.160 -948 -1.153 -0.43 -1.163 -1.163 -1.163 -1.163 -1.163 -1.163 -1.163 -1.163 -1.163 -1.163 -1.163 -1.163 -1.163 -1.163 -1.163 -1.163 -1.131 -1.1731 -1.1731 -1.1731 -1.1732 -1.1732 -1.1732 -1.1732 -1.1732 -1.1735 -1.448 -2.321 -1.1735 -1.448 -2.321 -1.1755 -4.448 -2.22 -2.4266 -1.066666 $-1.0666666666666666666666666666666666666$	Wordow	0000	1 600	610		010	1 1 0		077
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AN GISSEL	2622		04z	140	040	200 T	040	143
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N-Methylformamid	-125	-418	-166	36	242	416	-163	344
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Formamid	-159	323	-136	-31	-161	-321	-131	-29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N, N-Dimethylformamid		-3963	-1844	-448	-302	-3918	-1755	413
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Acetonitril	-690	-10009	-4602	-1104	-680	-9965	-4465	-1050
	Propylencarbonat	242		364	-85	-139	822	-355	-81
Ethanol $ -4664$ -2230 -550 -771 -4579 -2113 -15	Ethanol		-4664	-2230	-550	-771	4579	-2113	-507

Leitfähigkeitsmessungen

höheren Dielektrizitätskonstanten von N-Methylformamid und von Formamid erfolgt nur teilweise Ionisation, da die Akzeptorzahl dieser Lösungsmittel entsprechend kleiner sind. Das Ausmaß der Ionisation ist umso geringer, je kleiner die Akzeptorzahl und je kleiner die Dielektrizitätskonstante, was für Acetonitril, Propylencarbonat und N,N-Dimethylformamid zutrifft.

Erst in Lösungsmitteln mit niedrigen Dielektrizitätskonstanten (kleiner als etwa 30) tritt der Effekt der Akzeptorzahl gegenüber dem der Dielektrizitätskonstante zurück wie dies in Ethanol der Fall ist.

Das Fehlen eines geeigneten mathematischen Modelles macht eine Berechnung von Dissoziationskonstanten nicht möglich. Es ist daher auch nicht festzustellen, ob in einem gegebenen Lösungsmittel ein wesentlicher Unterschied in der Dissoziation von $(et_4N)_3Fe(CN)_6$ und $(bu_4N)_3Fe(CN)_6$ besteht. Deutlich geht aber aus diesen Ergebnissen hervor, daß die beiden untersuchten Verbindungen, Wasser ausgenommen, in allen untersuchten Lösungsmitteln unvollständig dissoziiert vorliegen.

Dank

Dem Fonds zur Förderung der wissenschaftlichen Forschung in Österreich (Projekt 1969 und 3004) wird für die Unterstützung dieser Arbeiten gedankt.

Literatur

- 1 V. Gutmann, G. Gritzner und K. Danksagmüller, Inorg. Chim. Acta 17, 81 (1976).
- ² G. Gritzner, K. Danksagmüller und V. Gutmann, J. Electroanal. Chem. 72, 177 (1976).
- ³ G. Gritzner, Inorg. Chim. Acta 24, 5 (1977).
- 4 G. Gritzner, V. Gutmann und R. Schmid, Electrochim. Acta 13, 919 (1968).
- ⁵ L. Onsager, Physikalische Z. 28, 277 (1927); G. Kortüm, Lehrbuch der Elektrochemie, 5. Auflage, S. 187. Verlag Chemie. 1972.
- 6 J. Barthel, Fortschritte der physikalischen Chemie 10. S. 77-78. Darmstadt: Steinkopff. 1976.
- ⁷ R. Gopal und Ö. N. Bhatnagar, J. physic. Chem. **70** (3007) 1966.
- 8 G. S. Hartley und G. W. Donaldson, Trans. Faraday Soc. 33, 457 (1937).
- 9 H. M. Daggett, E. J. Bair und C. A. Krauss, J. Amer. Chem. Soc. 73, 799 (1951).
- ¹⁰ J. Thomas und D. F. Evans, J. physic. Chem. 74, 3812 (1970).
- ¹¹ L. M. Mukherjee, D. P. Boden und R. Lindauer, J. physic. Chem. 74, 1942 (1970).
- 12 D. F. Evans und P. Gardam, J. physic. Chem. 72, 3281 (1968).
- ¹³ V. Gutmann, The Donor-Acceptor-Approach to Molecular Interactions. New York: Plenum Press. 1978.
- ¹⁴ V. Gutmann und E. Wychera, Inorg. Nucl. Chem. Letters 2, 257 (1966).
- ¹⁵ U. Mayer, V. Gutmann und W. Gerger, Mh. Chem. 106, 1235 (1975).